skip to main content


Search for: All records

Creators/Authors contains: "Susarla, Sandhya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Abstract Polar vortices in oxide superlattices exhibit complex polarization topologies. Using a combination of electron energy loss near-edge structure analysis, crystal field multiplet theory, and first-principles calculations, we probe the electronic structure within such polar vortices in [(PbTiO 3 ) 16 /(SrTiO 3 ) 16 ] superlattices at the atomic scale. The peaks in Ti $$L$$ L -edge spectra shift systematically depending on the position of the Ti 4+ cations within the vortices i.e., the direction and magnitude of the local dipole. First-principles computation of the local projected density of states on the Ti $$3d$$ 3 d orbitals, together with the simulated crystal field multiplet spectra derived from first principles are in good agreement with the experiments. 
    more » « less
  3. The AA′-stacked FCGT is a new class of room-temperature Néel-type skyrmion hosting material with C 6v symmetry. 
    more » « less
  4. Abstract

    Complex‐oxide superlattices provide a pathway to numerous emergent phenomena because of the juxtaposition of disparate properties and the strong interfacial interactions in these unit‐cell‐precise structures. This is particularly true in superlattices of ferroelectric and dielectric materials, wherein new forms of ferroelectricity, exotic dipolar textures, and distinctive domain structures can be produced. Here, relaxor‐like behavior, typically associated with the chemical inhomogeneity and complexity of solid solutions, is observed in (BaTiO3)n/(SrTiO3)n(n= 4–20 unit cells) superlattices. Dielectric studies and subsequent Vogel–Fulcher analysis show significant frequency dispersion of the dielectric maximum across a range of periodicities, with enhanced dielectric constant and more robust relaxor behavior for smaller periodn. Bond‐valence molecular‐dynamics simulations predict the relaxor‐like behavior observed experimentally, and interpretations of the polar patterns via 2D discrete‐wavelet transforms in shorter‐period superlattices suggest that the relaxor behavior arises from shape variations of the dipolar configurations, in contrast to frozen antipolar stripe domains in longer‐period superlattices (n= 16). Moreover, the size and shape of the dipolar configurations are tuned by superlattice periodicity, thus providing a definitive design strategy to use superlattice layering to create relaxor‐like behavior which may expand the ability to control desired properties in these complex systems.

     
    more » « less
  5. Abstract

    Despite decades of research, metallic corrosion remains a long‐standing challenge in many engineering applications. Specifically, designing a material that can resist corrosion both in abiotic as well as biotic environments remains elusive. Here a lightweight sulfur–selenium (S–Se) alloy is designed with high stiffness and ductility that can serve as an excellent corrosion‐resistant coating with protection efficiency of ≈99.9% for steel in a wide range of diverse environments. S–Se coated mild steel shows a corrosion rate that is 6–7 orders of magnitude lower than bare metal in abiotic (simulated seawater and sodium sulfate solution) and biotic (sulfate‐reducing bacterial medium) environments. The coating is strongly adhesive, mechanically robust, and demonstrates excellent damage/deformation recovery properties, which provide the added advantage of significantly reducing the probability of a defect being generated and sustained in the coating, thus improving its longevity. The high corrosion resistance of the alloy is attributed in diverse environments to its semicrystalline, nonporous, antimicrobial, and viscoelastic nature with superior mechanical performance, enabling it to successfully block a variety of diffusing species.

     
    more » « less